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ABSTRACT

The coupled oscillations of containers, partially filled with an
inviscid and incompressible liquid, are investigated. The following container
configurations are considered: (1) a long, rectangular tank with an elastic
bottom, (2) a long, rectangular tank with elastic walls, and (3) a cylin-
drical tank with an elastic wall. Linear theories are used for the descrip-
tion of the motion of the fluid, and that of the container. Numerical values
of the natural frequencies are presented for various liquid heights and tank

configurations.
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SYMBOLS
Plate regi&ity
Modulus of elasticity
Gravitiational acceleration
Plate thickmess
Liquid depth
Tank width
Pressure
Time
Transverse displacement of plate
Cartesian coordinates
Velocity potential
Natural circular frequency
Poisson's ratio
Density of liquid

Density of container material

Natural frequencies for rigid bottom tank



INTRODUCTION

Numerous authors have used linear and non-linear theories in studies
of liquid oscillations in rigid containers. However, work involving coupled
oscillations of liquid and elastic containers, is quite limited. Miles [1]
accounted for the flexibility of the tank by considering specific natural
modes of the tank. Bleich [2] used approximate methods to include the
elastic properties of the bottom of the tank and obtained a solution which
is valid for large depths of liquid. Bhuta and Koval [3] accounted for the
flexibility of the bottom by treating it as a membrane. Siekmann and Chang [4]
calculated the natural frequencies of a liquid in a cylindrical tank with
elastic bottom, by using a method similar to that of Bhuta and Koval.
Huang [5] and [67] studied the longitudinal sloshing of a liquid in an elas-
tic, hemispherical tank, with contradictory results. Coale and Nagano [7]
presented an approximate solution for the axisymmetric modes of an elastic
cylindrical-hemispherical tank, partially filled with liquid. Only membrane
theory is used for the tank and some boundary conditions are not completely
satisfied.

The present study is concerned with the coupled oscillation of a long,
elastic, rectangular tank, and a cylindrical tank with elastic wall, both
partially filled with liquid. The. analyses of the containers are based on

bending theory.



BASIC EQUATIONS
The governing equation for the motion of an inviscid and incompressible

liquid is

v =0, (L)

where ¢ is the velocity potential, related to the velocity of the particle by

v = Vo . (2)

At the free surface of the liquid the boundary condition is

2

[22+52] -0, (3)
ot z=H

where z is the vertical coordinate, as measured from the bottom of the tank,

and where H is the height of the liquid. The pressure at any point in the

liquid is given by
=, 2 -
P pf St + pfg(H Z) (4)

where p. is the mass density of the liquid.
The equations of motion of the containers may be written in the follow-

ing general form
[LQ’B]{ui} + Ph{ﬁi} = {pi} ’ ()

where the LaB are spatial differential operators, u, are the components of
displacement for the container with respect to static equilibrium configura-
tion, p is the demsity of the container material, h is the thickness of the

tank wall, and Py is the loading function., For the problem under study only

normal loading component exist and is related to the velocity potential as

follows:



= 0
P; = Pg 3t :
at the interface of liquid and tank.

Equation (5) couples the liquid velocity potential ¢ and the container dis-
placements ui.

As usual, harmonic motion is assumed for the system. The generél
solutions for ¢ and u, are then obtained by solving the coupled differ-
ential equations (1) and (5) in conjunction with the condition, equation (3),
at the free surface of the liquid. The requirement of compatible motion of
liquid and container then results in the frequency equation. An iterative

procedure is used to obtain the numerical wvalues for the natural frequencies.



LONG RECTANGULAR TANK WITH ELASTIC BOTTOM
In Cartesian coordinates the motion of an inviscid and incompressible

liquid is governed by

2 2 2
lsg+l‘22+i%=0. (1)
ox oy dz

The geometry of the system under study is shown in Figure 1. For a long,
rectangular tank, the fluid particles are assumed to move in vertical planmes.
The motion of the liquid is therefore independent of y. The boundary condi-

tions at the free surface of the liquid, and at the interfaces of the tank are

X -

&2 =0, (2)
x=0

L ¥

[zﬁm ]
+ g =0, (4)
atz oz z=H '

X = 0 (Rigid bottom) , (52)

foL4 2=0

gf o = g% (Elastic bottom) , (5b)

where w is the transverse displacement of the plate, g is the gravitational
acceleration, and t is the time.

When harmonic motion is assumed for the system, the general solution
of Equation (1), in conjunction with the boundary conditions (2), (3), and

(4) 1s found to be



Figure 1. Long Rectangular Tank.



o0
o(x,2,t) = etut z Au[cosh E-LTE-F Y, sinh m'nL_z] cosh 'Tx ’ (6)

m=0

where

= mrH 7
h L

v
" wzsinhm;‘—-lﬂ-g%—.r cos

and where @ is the natural circular frequency of the system.
For a tank with a rigid bottom the satisfaction of Equation (5a) results

in the frequencies O of the liquid oscillation

o= (EI:E) tanh ZH | ' (8)

For a tank with an elastic bottom the elastokinetic behavior of the

bottom is governed by the plate equation:

2
ovte + ph 2= p| (9
ot z=0

where w is the transverse displacement with respect to static equilibrium
position, D is the plate rigidity, p is the plate density, h is the plate

thickness, and the pressure p, on the plate is

Sp

= Pg ot (10)

| 4

2z=0 z=0

Again, for a long tank, Equation (10) is independent of y. Substitution of

Equation (6) into Equation (9), in conjunction with Equation (10) yields:

4 2 =
D .a_%.,. oh -L‘é7 = pfiweiwt z A cos MLK . (11)
x 3t |
m=0



The boundary conditions along the edges of the plate, or x = 0 and x = L, are:

a) Simply supported case

w=20, (12)
2w
3—2 =0. (13)
ox

b) Clamped case

w=20, (14)
™

= 0. (15)

The general solution of Equation (11) is assumed as

w(x,t) = W(x)eiwt . (16)

Substitution in Equation (11) results in the ordinary differential equation

Dg'4—w-phwzw=pfiw

4 Am cos EIX . (17)
dx

T 018

0
The general solution of Equation (17) is found to be

W(x) = B, cosh Ax + B, sinh Ax + B, cos Ax + B, sin \x

mirx
+ 1w z amAm cos 5=, (18)
m=0
where
22 = g 2 PR P (19)
= , =
D m D (mﬁ>2 4
T) -



The respective application of the boundary conditions (12), (13) or (15) and

(16) then has the result that the arbitrary constants Bl’ B2’ B3 and B4 may

be expressed in terms of the Am as

.

in which the Bjm

a) Simply

Blm =

B2m

B3m

B4m

5]

= iw T B o A j= 1,2,3, and 4) ,

L, Tim "mm
m=0

have the forms:

supported case

i1 - 4 ()],

A
_ 2
1! _ cos my 1l (mm
2 [ eoth AL - ok ) L 2 (1.) ] ’
2
i L (mx
-2[1+)\2<L>]’

b) Clamped case

Bjm =
where
11 ~

12 °

31

le + sz cos mmy ,

1 - cosh AL cos )L ~ sinh )L sin )L

2(cosh AL cos AL = 1)

cosh AL - cos )L

2(cosh AL cos AL - 1) °

_ 1l =cosh AL cos AL + sinh AL sin )L

2(cosh AL cos AL -~ 1)

’

(20)

(21a)
(21b)
(21¢)

(214d)

(22)

{23a)
(23b)

(23c)



By, = = By, » (23d)

B sin 2L - B sinﬁ AL .
B. = -8B .= 31 11 (23e)
21 41 cosh AL =~ cos AL ’
5 B - B32 sin AL - B12 sinh AL (236)
22 42 cosh)L. - cos AL ’

The functions cosh Ax, sinh Ax, cos Ax and sin 1x can be expanded as Fourier

cosine series in QEZ. As a result, the general solution for the transverse

deformation of the plate may be written as:

it
w(x,t) = iwe {:E: % [E (Blmao + B2m o + B3mco + B4mdo)

(24)
nnx nmx
+ E: (Slman + B2m n * B3an + B4mdn) cos 7, ] E: &, cos ’
n=1
where
a = > sinh AL (25a)
o AL ’ a
- 2\ sinh )L cosp m
U@
L
b = 2 (cosh AL - 1) (25¢)
o AL ’ ¢
b = ZA [cosh AL
n = 2 a2 Leos A cos nm - 17, (254)
{22 + ()]
L .
c_ = 2 sin AL (25
O—)\L ’ ) e)

_ 2\ sin )L cosn n

n nm : | (25£)
eNc

(2]
I



do = 3L (1 - cos AL) (25g)

dn = L[xz-gi%?)z]_[l - cos AL cosn ] (25h)

For a tank with an elastic bottom, the satisfaction of the boundary condi-
tions (5b) in conjunction with Equations (6), (18) and (20) results in a
doubly infinite system of simultaneous, homogeneous algebraic equations for

the Am, i.e.,

laplag} = {0}, (26)
where
_ .1 2 P
an ="y wo (B a + B, b+ Byec B, d)+ o Bom * (27a)
2
2 Pf%
= = - nn
a =-w °h(51man + BZmbn + B3m°n + B4mdn) ((5553-:-;2-+ T Yn>8nm s (27b)
L

8 m being the Kronecker delta. For a nontrivial solution of Equation (26)
the determinant of the coefficient matrix must vanish. The frequency equa-

tion thence becomes

=0, (28)

Numerical Examples

The following data is used to calculate the frequencies for the liquid

in a partially filled tank with elastic bottom:

v = 0.3; g = 32.2 ft/sec?; L = 2.0 ft.

10



The bottom is considered to be clamped along ité edges. The lowest circular

frequencies in radians per sec for various liquid depths are calculated by

taking twenty terms in the series solution.

in Table 1 and also plotted in Figure 2.

TABLE 1

FUNDAMENTAL FREQUENCIES "@"

The numerical results are shown

d=77*% = 110
H/L Rigid Bottom

D = 49 in-1b = 16.8 in-1b
1/8 4.3842 4.2779 4.,1485
1/4 5.7557 5.6970 5.5781
3/8 6.4560 6.4275 6.3518
1/2 6.8104 6.7898 6.7421
5/8 6.9731 6.9629 6.9454

193

3.13 in-1b

3.4800
4.7859
5.6484
6.2109
6.5859

*d=p. L/(ph) and D is the plate rigidity

The®e numerical values were obtained by using an iterative procedure on a

Burrough 220 computer.

For H/L = 3/4, the difference between the frequencies

for the tank with elastic bottom and that with a rigid bottom was undetectable.

11
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Figure 2, Fundamental Frequencies of Long Rectangular Tank
with Elastic Bottom,
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LONG, RECTANGULAR TANK WITH ELASTIC WALL
For an infinitely long tank the equation governing the motion of the

liquid in the tank is

2 2 '
224+22. 0, (1)
X oz

The geometry of the system under consideration is shown in Figure (l). The

boundary conditions associated with Equation (1) are

@ =0, (2)
2=0
[-3—252 +g 39-] =0, (3)
Btz oz z=H
X0 _ Qu
& = at ? (4)
x=0
o0} .4
o x=L - )

The general solution for the velocity potential is assumed to be
iwt
(P(xsz’t) = X(x)Z(2)e @ ’ (6)

where w represents the natural circular frequency of the system, The sub-
stitution of Equation (6) in Equation (1) and the satisfaction of the boundary

conditions (2) and (3) have the result

[
o(x,2z,t) = eiwt E: (An cosh € X + Bn sinh enx)cos €2 (7)

n=1

13
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Figure (3)
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where the €, are the roots of the equation

eH tan eH=-Q:—H-. (8)

The equation of motion of the wall along x=0 is

4 h, .2
Su, oy e (9
524 2 at2 1 9lx=0

The assumption of harmonic motion of the form
iwt
u(z’t) = U(z)e s (10)

and substitution of this expression in Equations (i) and (9), has the result

du e e i
dz4 - kl U = (iw) An cos € z . (11)

n=1
The general solution of this equation is

U=238 coshklz + B, sinh A,z + B

1 2 1 3 cos Alz + B4 sin Alz

P S An
+ = (iw) z ——=—— cO0S§ €_2
D1 e 4-A 4 n” ?

n=1 n 1

(12)

which must satisfy the possible boundary conditions:

a) Simply supported

n(0) p@) =0,

p"(0) =p"@ =0,

13)

b) Both edges fixed
w(0) = p)

nt(0) pt@) =

]
o
-

(14)

|
o
L[]

15



Both edges of the walls will be considered fixed here. The integration
constants Bj (j = 1 to 4) can be expressed in terms of An by applying the

boundary conditions shown in Equation (14). They are found to -be -
= —_—t W
B ) Ry it 1)
W

where

1 - cosh AL cos A,L - sinh A,L sin A,L + cos ¢ L (cosh A,L - cos A,L)
K. = 1 1 1 1 n ) 1 1
1y 2(cosh ML cos ML - 1)

€
4 -
X sin euL (sinh le sin KlL)

1
* 2(cosh ML cos L - 1) s (16)

cosh A,L sin AL + sinh A,L cos A,L - cos ¢ L (sinh A,L + sin A,L)
K = 1 1 1 1 W 1 1
2n 2(cosh llL cos KlL - 1)

e .
i -
x sin euL (cosh le cos le)

1
2(cosh A;L cos AL - 1) s : (17)

1 - cosh AIL cos AlL + sinh A,L sin XlL - cos euLAF??sh le - cos le)

= 1
Kgy = 2(cosh AL cos AL - 1)
u
ll sin euL (sinh llL - sin AlL)
2(cosh XlL cos le -1) ’ (18)
The equation of motion of the wall along x = £ is
4 h
.B_%_,_p%?.v:.;_f%g (20)
oz 2 2 x={

16




The solution of Equation (20) is assumed in the following form:
v = V(z)eiwt . (21)

Substitution of Equations (7) and (21) into Equation (20) gives

4, p(1w) S
v 4 £ z
= kz V= > (An cosh enz + B sinh enz) cos €.z , (22)
daz 2
n=1
where
k4=pzhzw2
2 D2

The general solution of the Equation (22) is

V=3 cosh xzz + B2 sinh xzz + B3 cos xzz + 34 sin xzz
pf(i(.l)) 2 1
+ > }E A (An cosh enz + B, sinh enZ) cos € z . (23)
2. -\
n=l n 2

The application of the boundary conditions (14) results in the expressions

pf(iw) Kiu
* =
Bj D2 E: 4-x24 (Au cosh euz + Bu sinh eul) (24)

p=1l "u

for the integration constants Bj*'
It is assumed that the liquid remains in contact with the wall through-
out the motion. The conditions shown in Equations (4) and (5) must be satis-

fied. The relationships for the determination of the coefficients An and Bn

become
© 2 2 o
pgw pgw 2 A,
) [m Ay + 6B, con ez + - 5% Ky, cosh Ay
n=1 “1'¢n ™M ey T |
+ Kzu sinh Az + K3ﬂ cos xlz + K4u sin xlz] =0 (25)

17



and

Z{[ sinh €y g+ — 4 A cosh enl,] An +
D, (e, "1, )
22 o] 1)
+ [en cosh enl?, + _— 4_7\ 4) sinh enz B . cos enZ +
2'"n 2
(26)
pfm2 o A cosh ¢ £ + B sinh ¢ £
+ ‘ZJ* . i b IR, cosh A.z + K., sinh A\.z +
p=1 B2
+ K3IJ: cos A,z + K4I-b sin )‘ZZ] =
The functions, cosh )\kz, sinh )\kz, cos )\kz and sin xkz expressed in
terms of their Fourier series expansions are:
o]
h A,z = z k 0
cos K= a, cosez,
n=1
(=]
sinh A,z = z bkcosez
k n n
n=1
(27)
o«©
Mz = z k
cos Az = ¢, €O0S €.z,
n=1
ow®
sin )\kz = z dn cos e,Z »
n=1
where
ank - 22 7 (Ak sinh AkH cos enH + €, cosh ).kH sin ¢ H) , (28)
H*(h, “+e ) n

18




k 2 -
b=~ =T (kk cosh Akﬁ cos enH + € sinh lkﬂ sin enH xk)

n H*(sz"'enz)
k 9 ) ) . o
cn“ = ——__—i?‘—75- (xk sin xkﬁ cos enH - e, cos XQH sin enH) » (28)
H*(A, “-e ©)
k__ 2 - -
dn =2 3 (Ak xk cos ka cos enH € sin XkH sin enH) s
B "-e )

and

H* = H + == sin(2¢_H) .

~o

Substitution of Equations (27) and (28) into Equations (25) and (26)

results in the following algebraic equations:

oo w? b2 & A
£ £ }2 " (1) ey (1)
{D A +eB }Gnu- + 7 (Ky AT 4K, b UK, ©

4 . 4 D 4_ pn 2u 3um
1(en }\1 ) 1 u.=1 €u )\1
@, _
+ K4udn ) 0 _ (29)
and
2 2
{[e sinh ¢ 4 + cosh ¢ l]A + [e cosh ¢ £ + sinh ¢ LJBH} H
n n 4 4 n Jin n n 4 4 n
Dz(en Ay ) D2(en X, )

(30)

o® & A hef+B sinhe £
e z w0 oy w0 ® aPhx b (g a2y oo
4 . 4 lp n 2u n 3un 4p n '
-1 €, A,
H= W

Since n ranges for 1 to infinity this results in a doubly infinite system

of equations for the unknown coefficients An and Bn’ i.e.,

%y Fau %
=0, (31)
*
e PaudL By,

19



where

2
Pg W

'’ 4_
Dl(eu 11

¢D) 1) (1) (&Y
4) [(Klpan +K2pbn +K3ucn +K4udn ) + anu].,_

Snu = € 5nu ’

2
SN it Tl O TR C DT C O O
g 4 4 lpn 2y n 3 n 4y n
Dz(eu A, )

(32)

pf»z cosh ¢ £
A

+[e sinh ¢ £ + ]6 R
n n - ny,
Dz(en xz )

pfwz sinh ¢ £
= Wk, alPx 5Phx, Pk, a(2))

*
1y n 2u n 3un 4p.dn

ny 4_, 4
Dz(eu A, )

pfwz sinh enl.
+ [en cosh enz + ] oy

4 . 4
Dz(en -)\2 )
For non-trivial solution, the determinant of the coefficient matrix of the

Bquation (31) must vanish, or

anp Bnp

=0, _ (33)
o* B*
ny, ny
which represents the frequency equation.
If only one of the two walls, say the left side one, is elastic and
the other side 1s rigid, the following equation may be reduced directly from

Equations (29) and (30) by considering D

= o2

2

20



| Cvy,J B3 =0 - (34)

where

w cosh ¢ ot pfw cosh € L
I it ul (X, a K, b g, cn+K4 d )+ (
M p (e 4 b D (e
1 -2)
- ¢ sinh enz)anu (35)

The frequency equation can be obtained immediately by requiring the deter-

minant of the coefficient matrix of Equation (34) to vanish, or

I, | = © (36)

Numerical Examples

In order to illustrate the results of the analysis, numerical examples
for a tank with one wall elastic and the other one rigid and for a rectangu~
lar tank with both wall elastic were worked out on a Burroughs 5500 digital
computer. The infinite order determinant of Equations (33) and (34) were
truncated to a twentieth order one for the calculation of the first coupled
natural frequency.

The results of the numerical examples are given in Tables 2 and 3 where
the coupled frequencies are in radians per sec. The variation of frequencies
versus liquid height is also plotted in Figure (4). The data common for all

cases are

h = 0.005 ft., w=4 ft., L =5 ft.

2
o = 5.217 1b-sec /ft.%, pp = 2.019 1b-sec?/£t?
E = 1.44 x 10° psf, v = 0.3



TABLE 2

FUNDAMENTAL CIRCULAR FREQUENCIES FOR A PARTTALLY LIQUID FILLED
RECTANGULAR TANK HAVING ONE WALL ELASTIC AND THE OTHER ONE RIGID

H ft H/L w rad/sec Q rad/sec*
5 1 3.31 5.03
4.6 0.92 3.70 5.03
4.2 0.84 4,18 5.02
3.8 0.76 4,81 5.02
3.4 0.68 5.73 5.00
3.0 0.60 7.32 4,97
2,6 0.52 11.93 4,95
2.2 0.44 22.49 4,87
1.8 0.36 22,49 4.74

*
Rigid tank slosh frequencies

TABLE 3

FUNDAMENTAL CIRCULAR FREQUENCIES FOR A PARTIALLY LIQUID FILLED
RECTANGULAR TANK WITH BOTH WALLS ELASTIC

H_ft H/L g rad/sec Q rad/sec*
5 1 3.21 5.03
4.6 0.92 3.61 5.03
4,2 0.84 4,09 5.02
3.8 0.78 4,71 5.02
3.4 0.68 5.62 5.00
3.0 0.60 7.21 4.97
2.6 0.52 11.79 4,95
1.8 0.36 22.01 4.74

* .
Rigid tank slosh frequencies

22
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Fundamental Frequencies of Long Rectangular Tank
with Elastic Wall.
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CYLINDRICAL TANK WITH ELASTIC WALL
The governing differential equation for the'axisymmetrical motion of

liquid in cylindrical coordinates 1is

2 2
5—% + gm + 5—? =0. (1)
or o oz

L L

The boundary conditions, which must be satisfied at the rigid bottom and at

the free surface of the liquid are

X0 _
S =0, (2)
r=0
%% =0, (3)
=0
22 3
) ]
[Btz + g ssz=u =0 . 4)

The geometry of the system under consideration is shown in Figure (5).
A separable solution for Equation (1) is assumed and the motion is

considered to be harmonic. The velocity potential ¢ thus takes the form
o(r,2z,t) = R(x) z (2)e " )

where w 1s the natural frequency of the system. The general solution of the

Equation (1) with Equations (2), (3), and (4) all satisfied is found to be

[==]
iwt
o(r,z,t) = e E: An cos e z Io(enr) s (6)

n=1
where €, are the roots of the Equation

2
¢H tan ¢H = - ﬁ; H. (7)

24



Figure (5)
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The pressure at the tank wall is

el
_ iwt
= pglinde E: A cos ez I (ea). (8)

X
Pf 3t r=a
- n=0

The following differential equation governing the motion of the cylinder is

used:

R
I

Pe
--T 8 - 2

il
N

+ Eb; w + %F
Da

0z ot r=a

Equation (9) is derived based on the assumption that the longitudinal inertia
of the shell has negligible effect on the motion of the shell. The trans-
verse displacement, w, is defined to be positive if it moves along inward
normal direction. The motion of the cylinder is assumed to be harmonic and

takes the form
w(r,t) = w(r)e ™t . (10)

Substitution of Equation (10) into Equation (9) results in the following

ordinary differential equation:

4 “p &
Z_% + 4)\4 W= -T)-i (iw) Z A cos ¢z Io(ena) ’ 1D
z
n=0
where
4 _ 1/Eh _ 2>.
4p" = D a2 phw . (12)

The boundary conditions for the cylindrical shell are

a) Simply supported

26



w =0, (13)

sz =0 . (14)
b) Clamped edge

w =0, (15)

w, =0. (16)

The general solution of the differential equation (11) is found to be

w = e)‘z(B1 cos Az + B, sin Az) + e-)‘z(B3 cos jz + B4 sin Az)

2
(17)
p @ I (e _a)a
s 4 (iw) N I cOos €_zZ
D L 4 + 4k4
n=1 €n

where Bl’ B2, B3, and B4 are integration constants which may be expressed
in terms of Fourier coefficients An when the boundary conditions shown in
Equations (13), (14), and/or Equations (15) and (16) are applied.

For a cylindrical tank clamped along both ends, boundary conditions
shown in Equations (15) and (16) must be satisfied. The integration con-

stants Bl’ BZ’ B,, and B4 are found to be

3

S pe(1w)I (e a)A
=Z £ 4°LL4”-1<,5=1:;04. (18)
[

Ju
b=l + 4)07)

where

K, = - —=+1e cos € . (sin AL - cos AL) - sin ¢ sin AL
1y <1 uL A na

€
+ exL[cos epL(Sin AL + cos AL) + 7& sin ¢ sin XL]

pL

=2A\L

+ e - 2 - sin(2)\L) + cos (ZXL)}
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Kou = c, ["31‘1”L - 2 cos ¢ sin AL + f)fk
K3IJ- =+ (1 + Klp.)
K4u = + (2K1u + KZu + 1)

and
Cl =4 -~ 2 cas 2AL ~ GZXL - e-ZXL
¢, = e [2+ sin(2AL) - cos(2L)] - &M
C, = e M L oM orgin(aan) + cos(2AL)]
The functions elzcos Az, elzsin Az, e_cho

expanded in Fourier cosine series as

«©
Az
e “coshz = a_ cos

m=1

51nlz = ;1 b cos

E'AZcoS)\z= y dm cos

m=1

=]
-)\Zsinlz= z d cos
m

m=1

where
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I

A ; AH
1 cos()\+em)H 17 + (X+em)e sin(em-f-)\)H

fk[e
*m ~ [H + -2%; sin(ZemH):Il_ ' A2 + '()\+em)2

)\[e)"H cos(A- em)H-lj + (7*\-t-:m)e)".ﬂ sin()\-em)H
T 2 2 ’
AT+ (X-em)

1 lem sin()+ em)H - (k+e:m)|:euI cos()d'em)H - 1]

m = | 1 :l 2 2
[H + —2em sin(2emH) A+ (x+em)

b

AH AH
Ae sin()\-em)H ()\-ea)[e cos(k-em)H 17

+
2 2
AC + (k-em)

-AH ~A
1 (K+em)e sin(x+em)H - Ale " cos(x+em)H - 17

m - 1 ] 2 2
[H + _2€m sin(2emH) S+ ()\+em)

C

=\ =\
()\-em)e H sin(?x-em)H - Ae H cos()\-em)H - 1]

+
A2 Aee )2
+ ( em)

-Ag , . Ay
xe 31n(em+l)H + (l+em)[e cos(x+em)H - 1]

1
d = -
m 1 2 2
[H + —2€m sin(ZemH)] S+ ()\+em)

xe N sin(X"egc)H + (X'eﬂ)[e-)\ﬂ cos(h-e JH - 1]

+
2 2
AT+ (x-em)

For compatible motion of the tank wall and the liquid in the tank,

the following condition must be satisfied:

2 _
ot + %ﬁ (26)
r=a .
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Substitution of Equations (5) and (10) in conjunction with the
Equations (18) through (25), into the Equation (26) yields the doubly infin-

ite system of simultaneous, homogeneous algebraic equations:

. [°5u]{Au} =0, n,p=1too (27)
where
2
LS SuN +XK_ b +K +X, d)
o = a (o
TR R R

M
(28)

2
+ {D Pe 2 - € Il(ena)} )
(en4+4)\4) n I (e a) "ny
ﬁﬁere 6nu is the Kronecker delta. For non-trivial solution, the determinant

of the coefficient matrix must vanish. Therefore, the frequency equation

becomes

ahul =0 _ (29)

The fundamental frequencies of a liquid partially filled in an elastic
circular cylindrical tank with a rigid bottom are obtained according to the

following data:

168 1b/cu. ft. P8 = 65 1b/cu. ft.

PE

E = 1.44 x 10° psf. v 0.3, h = 0.001 ft. a =12 ft.

The results are shown in the Table 4 and Figure (6):
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TABLE 4

FUNDAMENTAL CIRCULAR FREQUENCIES FOR A PARTIALLY FILLED
CIRCULAR CYLINDRICAL TANK HAVING A FLEXIBLE WALL

H ft _H/a_ w rad/sec Q rad/sec*
2 0.166 63.28 2.40
3 0.250 50.21 2.76
4 0.333 42.48 2.96
5 0.417 37.17 3.08
6 0.500 33.16 3.14
7 0.583 29.98 3.17
8 0.667 27.37 3.19
9 0.750 25.15 3.19
10 0.833 23.26 3.20

*
Rigid tank slosh frequencies
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Figure 6. Fundamental Frequencies of Cylindrical Tank

with Flexible Wall,
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DISCUSSIONS

The coupled oscillations of a liquid partially filled in a container
having an elastic bottom or elastic walls have been studied. Two different
tank configurations, namely a rectangular and a circular container both
with flat bottoms were considered. Since the effect of the flat elastic
bottom of a circular cylindrical tank to the frequencies of the system has
been studied by several authors [37, [4], etc. Therefore, no further inves-
tigation is attempted in this report. The methods used for both configura-
tions are similar and straight forward. The effects of the flexibility of
the container may be summarized according to the results of the numerical
examples presented previously.

1. The flexibility of the bottom of a rectangular tank reduces the
natural frequencies of the system, The frequency increases as the depth of
the liquid increases and gradually approaches to the value corresponding to
the case of a rigid container. According to the numerical examples worked,
the effect of the flexibility of the bottom becomes negligibly small when
the depth of the liquid H is increased to approximately three-fourth of the
width of the tank.

2. TFor the cases where the flexibility of the container walls of a rec-
tangular tank are taken into account, the lowest frequency of the system
occurs when the tank is completely filled. The frequencies increase as the
depths of the liquid decrease. The frequencies exceed the value correspond-
ing to rigid tank case when the depth of liquid, H, is gradually reduced to
approximately three-fifth of the container height.

3. The corresponding natural frequencies for a rectangular tank having
one flexible wall are slightly higher, but not appreciable, than the case

having both walls flexible.
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4. The frequency increases as the depth of liquid decreases in a

circular cylindrical container having a flexible wall.
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